
Code Execution and

Runtime VerificationRuntime Verification

Jeff Zemerick

1

Outline

• The source code.

• The profiler.

• Executing unit tests.

• Runtime Verification.

Code Execution and Runtime Verification

• Runtime Verification.

2

Overview of the Code

• ~1.2 million SLOC

• Organized by functional module (~150

modules)

• The code in each directory is independent of

Code Execution and Runtime Verification

• The code in each directory is independent of

other code (can be built separately).

• Compiles and executes on x86 Linux.

• Built as shared libraries but must be built

statically.

3

Build Changes

• Components are compiled as shared libraries.

• Shared libraries cannot be easily

instrumented.

• Modified the build process to do the build so

Code Execution and Runtime Verification

• Modified the build process to do the build so

that the executable is linked statically.

– Determined what source files are needed (cross-

module), build and link them with the unit tests.

4

Outline

• The source code.

• The profiler.

• Executing unit tests.

• Runtime Verification.

Code Execution and Runtime Verification

• Runtime Verification.

5

The Profiler

• Created by my 4 NEAP interns this summer.

• C profiler.

• Event-based (function entrances/exits).

• Captures execution trace and can export the

Code Execution and Runtime Verification

• Captures execution trace and can export the

trace as: plain text, CSV, XML

• Translates function addresses to function

names.

• The interns did a fantastic job.

6

Instrumenting the Code

• Modified the makefile to include support for:

– Profiling (add my interns’ profiler object file when

linking)

– Debugging – allows for translation of (useless)

Code Execution and Runtime Verification

– Debugging – allows for translation of (useless)

function addresses to (useful) function names.

7

Example Execution Trace

main (1) (??)

|=-function1 (1) (main)

|=-|=-function2 (1) (function1)

Indentation

shows depth.

Code Execution and Runtime Verification

|=-|=-function2 (1) (function1)

|=-|=-function3 (1) (function1)

|=-|=-|=-function4 (1) (function3)

|=-|=-|=-|=-function5(1) (function4)

8

Outline

• The source code.

• The profiler.

• Executing unit tests.

• Runtime Verification.

Code Execution and Runtime Verification

• Runtime Verification.

9

Executing the Unit Tests

• A wrapper facilitates the execution of the unit

tests.

• The wrapper provides stubs for hardware-

specific functionality.

Code Execution and Runtime Verification

specific functionality.

– Allows for testing the code on X86 Linux by

providing stub functions for the hardware-specific

functionality.

10

UTH Example

Event Report

Module

(.h file)

Event report generation for FSW build:

FSW Event Report

Module

(.c file)

Any FSW Module
Event Report It

Code Execution and Runtime Verification

Event Report

Module

(.h file)

Event report generation for Test build:

UTH Event Report

Module

(.c file)

Any FSW Module
Event Report It

11

Outline

• The source code.

• The profiler.

• Executing unit tests.

• Runtime Verification.

Code Execution and Runtime Verification

• Runtime Verification.

12

Runtime Verification

• Requirements for runtime verification:

– Code that will compile and execute.

– Ability to instrument the code to monitor the

execution.

Code Execution and Runtime Verification

execution.

– Ability to compare the execution with a model of

the desired behavior.

• None of the FSW or unit tests were modified

for this work.

13

Purpose

• Using the execution trace of the code, can we

identify the presence of implemented

requirements?

Code Execution and Runtime Verification 14

Why We Can Attempt to Answer This

• Unit tests achieve 100% coverage of module

testing, per developer rule.

– If a requirement has been implemented, it should

be in the execution trace.

Code Execution and Runtime Verification

be in the execution trace.

15

Untested lines include

default statements in

switch statements and

code which is tested by

other modules.

Modeling the Behavior

• Model can be created in two forms:

– Plain text

– UML activity diagram (work in progress).

• Only one model per requirement is necessary.

Code Execution and Runtime Verification

• Only one model per requirement is necessary.

• Which model type to create and use is up to

the analyst.

• The behavior can be desired behavior or

undesired behavior.

16

Plain Text Model for Event Reporting

Model Rules:

command: <command>

success: <result>

failure: < result >

At least one command.

Either Success, Failure, or both.

Code Execution and Runtime Verification

failure: < result >

Example Model:

command: disable_bus_cmd

success: OK

failure: ERROR

17

Corresponding UML Model

Code Execution and Runtime Verification 18

Eclipse Integration Overview

• Provides a new Eclipse project type called

“NASA IV&V Runtime Verification.”

• Two new file types:

– Text Model Requirement

Code Execution and Runtime Verification

– Text Model Requirement

– Execution Trace

• Custom editors for both file types that

includes syntax highlighting and error

checking.

19

Eclipse Integration (1)

• Plug-ins allow

for creating a

“Runtime

Verification”

Code Execution and Runtime Verification

Verification”

project.

• Project contains

text models and

execution traces.

20

Eclipse Integration (2)

Code Execution and Runtime Verification 21

Eclipse Integration (3)

Code Execution and Runtime Verification 22

Eclipse Integration (4)

Code Execution and Runtime Verification 23

Model Checking

• Checks the execution trace for the model.

• Takes into consideration the:

– Order of commands.

– The depth of the call tree.

Code Execution and Runtime Verification

– The depth of the call tree.

– The distance between located commands.

• Will likely consider other factors as the
algorithm development progresses.

• Will accommodate UML models once
algorithm is sufficient.

24

Limitations

• Cannot test requirements that specify timing

or latency constraints.

• Cannot test hardware-specific requirements

without the flight hardware.

Code Execution and Runtime Verification

without the flight hardware.

25

Summary

• Runtime Verification can provide:

– Assurance that a requirement is implemented.

– Confirmation of a non-implemented requirement.

– Assertion checking to monitor states.

• Execution and profiling can provide:

Code Execution and Runtime Verification

• Execution and profiling can provide:

– Code coverage metrics:

• Locate untested code.

• Focus V&V efforts on code executed the most (80/20 rule).

– Isolating requirements in unit tests provides the
source code which implements that requirement.

26

Thank You

• Jeff Zemerick

• jeffrey.zemerick@tasc.com

Code Execution and Runtime Verification 27

